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A note on the velocity profile and longitudinal mixing 
in a broad open channel 

By T. H. ELLISON 
Department of the Mechanics of Fluids, University of Manchester 

(Received 6 September 1959) 

The mean velocity profile near the surface of turbulent flow in a broad open 
channel is discussed with dimensional arguments, and a new empirical constant m 
is introduced which is analogous to von K&rm&n’s constant for flow near a 
rigid boundary. It is shown that, while the velocity profile depends only rather 
weakly on m, the dependence of the coefficient of apparent longitudinal diffusion 
is stronger, and measurements of diffusion could, in principle, provide an accurate 
determination of its value. The new proflles for various values of m are compared 
with those in current use, and finally the correction for finite Reynolds number is 
discussed. 

1. Introduction 
In  a recent paper Elder (1959) discussed turbulent mixing in a broad open 

channel on the basis of Taylor’s (1954) theory and calculated a coefficient of 
apparent longitudinal diffusion in agreement with observation on the assump- 
tion of a logarithmic mean velocity profile. This form is not theoretically satis- 
factory near a free surface, and since the coefficient of apparent longitudinal 
diffusion depends strongly on the shape of the profile, some further investigation 
seems desirable. 

In  this note a more satisfactory form for the profile is sought. It is shown that 
dimensional reasoning, which in this context is equivalent to mixing-length 
theory, leads to a new formula containing one unknown constant. This constant 
plays a role at a free surface analogous to that of von KArmBn’s constant at  a 
fixed wall, and is named ‘the mixing constant a t  a free surface’. Rather precise 
measurements of the velocity profile would be needed for a direct determination 
of the value of the constant, but the more marked dependence of the apparent 
longitudinal coefficient suggests that it may be found more easily from measure- 
ments of diffusion. 

There are a large number of complications which may limit the usefulness of 
the present theory in practical situations. It was first developed some years ago in 
connexion with the diffusion of salt water in an estuary (Hughes 1958), but it 
turned out to be irrelevant in that case owing to the large effect of the density 
difference between the fresh and salt water. In  artificial channels the velocity 
profile is commonly distorted by a secondary flow due to their finite width; 
and in all cases any relative motion between the water surface and the air 
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above it may lead to a spurious surface current or even the generation of waves. 
Nevertheless, it still seems worth while to study the idealized case in which 
these complications are absent, for until that is understood, there is little hope 
of deepening our knowledge of real flows no matter how good empirical 
formulae may be. 

2. The velocity profile near a free surface 
In  a broad open channel containing a steadily flowing fluid of constant density 

the shear stress varies linearly with height and vanishes at  the free surface. So, 
if z is the height above the bottom, the friction velocity u* is given by 

u; = u”,( 1 - z/h), (1) 

or u* = P * o ,  (2) 

where p = (1 - x/h)B. Now if the Froude number u*o(gh)-) is so small that the 
surface remains flat and the Reynolds number u*Oh/v is so large that molecular 
viscosity may be neglected, and if it is assumed that the components of the 
turbulence which contribute to the eddy viscosity near the surface are determined 
entirely by local quantities without any direct dependence on the total depth of 
the flow, the usual dimensional arguments assert that the eddy viscosity is 
given by 

K = mu*@-2) 

= mhu*oq3, (3) 

where m is the unknown constant which has already been referred to as ‘the 
mixing constant at a free surface ’; the corresponding quantity near a rigid wall 
is von K&rm&n’s constant k. It follows from (3) that the velocity near the surface 
must be given by 

The logarithmic profile assumed by Elder does not have this form, and seems to 
lack justification. 

There is no difficulty in obtaining a crude estimate of the correction that must 
be applied to (4) when the Reynolds number is not so large that it can be neglected, 
and this will be done in $5. 

The flow near the free surface differs from that in the constant stress region 
near the floor in two distinct ways, each of which may cause m to differ from k. 
First, the stress at the surface is zero so that there is a gradient of turbulent energy 
and therefore the ‘diffusion’ and ‘pressure flow’ terms in the turbulent energy 
balance may be important. This situation also occurs at a point of separation of 
a turbulent boundary layer as has been discussed by Stratford? (1959a, b) who 
gives a formula equivalent to (3). He has also been able to produce an experi- 
mental flow with zero wall stress over a finite distance but which is necessarily 
complicated by the deceleration produced by a pressure gradient. From his 
determination of the variation of mixing length very near the wall, it would seem 

t I am indebted to a referee for calling my attention to this. 

u = u,,, - 2m-h*,( 1 - z/h)k (4) 



The velocity pro@ in a broad open channel 35 

that m is greater than k, but it is not possible to obtain accurate numerical values 
from his paper.? 

Secondly, a free surface differs from a rigid wall because tangential movements 
are not prohibited at the boundary, although it is doubtful whether such move- 
ments affect the eddy viscosity appreciably. At first sight it might be thought 
that all turbulent velocity at the surface was excluded by dimensional reasoning 
of the same form as that used for the eddy viscosity, but this is not SO if the move- 
ments extend in scale up to sizes comparable with the depth of the channel, since 
these scales are not covered by the dimensional argument. The point is quite a 
subtle one and outside the main theme of this paper; a brief explanation is 
, attempted in the appendix. 

3. The velocity profile in an open channel 
We know that near the floor of the channel 

K = ku, ,~;  (5) 

so, in order to obtain an approximation to K throughout the depth of the channel, 
we may conveniently fit a polynomial in q such that ( 3 )  is satisfied at  the surface 
and (5) at the floor. Thus 

where 

This formula may be compared with that resulting from the logarithmic profile 

and with that resulting from an application of von KBrmhn’s hypothesis to this 
flow (see, for example, Hunt 1954): 

The velocity profiles corresponding to (6 P ) ,  (6 L )  and ( 6  K )  may readily be found. 

k ( u - U )  b z - 1  In b + l  __ -In __ l + q  + b-l In b + q  - , 
They are 

=- 
U* 0 b b - 1  1 - p  b-!I 

k (u-  U )  
U* 0 

1 + In ( 1 - q2),  ___. = 

t The fact that in contrast to this the quantity /3 used by Stratford to represent (an 
average of) m/k in his inner layer is less than unity possibly suggests that in hia case the 
range of validity of (3) is less than his theory implies. 
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where U is the mean (discharge) velocity. U itself is to be found from the condi- 
tion that u = 0 when z = zo; so, since zo is very much smaller than h, 

1 .o 
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FIGURE 1. Difference between velocity profiles for various values of the mixing constant 
at the free surface and the logarithmic form. The dotted curve representa the von K&rmhn 
profile in the same way. 

The fact that (8 L)  and (8 K )  are commonly found satisfactory for engineering 
purposes yields a very crude method of estimating b. If we set 

b + i  In4-bln- 
b - 1  

equal to - 1-07, so that (8P)  coincides with the mean of (8L) and ( 8 K ) ,  we find 
b = 1.45 and so m/k = 1-91. 

The velocity profiles (7P), (7L) and (7K) are so alike that there is little prospect 
of deciding between them on the basis of direct measurements of velocity. In  
order to bring out the small differences most clearly, the difference between (7L) 
and (7K) and that between (7L) and (7P) for various values of m/k are plotted 
in figure 1.  
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4. The apparent longitudinal diffusion coefficient 
For a two-dimensional flow it can easily be shown (for example, by integrating 

equation (9) of Elder's paper by parts) that the coefficient of apparent longitudinal 
diffusion is given by 

D = ~01K-1[ j~1(u-U)dz]2d . .  (9) 

From (7P), (7L) and (7K) one finds respectively 

j z l (u-U)dz  = - ( l - q 2 ) l n ( l - q 2 ) ,  

( 1 0 K )  

So (9) can readily be calculated numerically in each case. The results are shown 
in figure 2. Elder's measurements gave a value of 6*06u,,h for D,  which with 
k = 0.40 would correspond to m = 0.80. However, in the present writer's opinion 
it is unlikely that sufficiently accurate measurements could be taken with the 
apparatus at Elder's disposal and the resulting value of m should be viewed with 
caution. It does, nevertheless, confirm the expectation that m is greater than k. 
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FIGURE 2 .  The apparent longitudinal diffusion coefficient as a function of the 
mixing constant at  the free surface. 

5. The correction for finite Reynolds number 
The peaks on the velocity profile at  the surface in figure 1 are due to the way in 

which K falls to zero; and it is important to inquire how they are modified by 
molecular viscosity, since in reality it is not possible for K to fall below v. 
Fortunately the correction which has to be applied is small in most practical 
cases and can be estimated. The following conventional analysis is certainly not 
exactly correct but should be adequate for most cases. 
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Let us write the total effective viscosity K as the sum of a turbulent part KT 
and a molecular part v ;  and also express the shear stress u$ as the sum of a 
turbulent part uiT and a molecular part u:,. Thus 

d u  du 
U i = u 2 * T f U * m -  - K T d z  - + v -  dx = q u*,. 

If we still use (3) for the turbulent part, 

(2rnIl,)* (1 - z /h )  

2-8 R&&% c".I.cu> 
U * U  

FIGURE 3. Correction to be applied to velocity profiles near the surface to allow 
for molecular viscosity. 

so a little algebra yields 

2(KY + v) = v + (v2 + 4m2h2q%$,)J- 

= hu,,Rgl{l + (1  + 4m2Riq6)*), 
where R, = hu,,/v. Hence 

where x = (2mR,)fq. 
Since (14 )  must coincide with the high Reynolds number solution (4) at large 

values of 2, the change induced by molecular viscosity can readily be computed. 
This is shown in figure 3. 

Values of R, encountered in practice may range from very low values in the 
laboratory to lo6 or more in geophysical situations. To take two examples, a 
channel lOcm deep with U = 10cmsec-1 and a drag coefficient of 0.01 gives 
R:, = lo3, and an estuary 10 m deep with U = 200 cm sec-1 and a drag coefficient 
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of 0.0025 gives R, = lo6. In  both these cases it happens (by a coincidence) that 
with m = 0.8 the correction to the surface velocity is 0.28 cm sec-l and the depth 
of the viscous sublayer 6, (which may be conveniently defined as the depth where 
molecular and eddy viscosity are equal) is 0.15 cm. The sublayer is thus of slight 
significance in the channel, and completely negligible in the estuary. 

There would be no difficulty in calculating the correction to the apparent 
longitudinal diffusion coefficient if one were to assume that in the viscous sub- 
layer the transport of pollutant was by molecular diffusion. However, it is 
known that the viscous but not laminar motions induced by the turbulence 
outside are important and these complicate the situation. There is also a further 
practical reason for not computing these corrections; for them to be valid, 
experiments would have to be conducted over times long compared with that 
required for a typical fluid particle to enter or leave the sublayer and that would 
require channels of immense length. 
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The si,miEarity state at the surface Appendix 

The theoretical idea behind the dimensional argument used in $ 2  is that there is 
a region near the surface in which the motion is in a state of dynamical similarity 
with its length scale proportional to (h - z )  and its velocity scale proportional to 
u * ~ (  1 - z/h)&. If this similarity state applies to the whole of the turbulence, it is 
clear that the fluctuation in horizontal velocity must be proportional to the 
velocity scale and so fall to zero at the surface, which should therefore move as 
a rigid sheet. Such strictly laminar motion of the surface does not accord with 
observation (though this is confined to channels of finite width) nor physical 
intuition; it thus seems desirable to modify the theory in such a way that the 
similarity state applies only to certain aspects of the turbulence, which include 
the eddy viscosity and the shear stress, but exclude the horizontal velocity. 

This modification can readily be made if we suppose that the motion is resolved 
into elements of different sizes (for example, by Fourier analysis) and admit the 
possibility that even near the surface there may be components in the horizontal 
motion with a scale comparable with the depth of the channel; since these extend 
beyond the region of similarity, it  is not reasonable to expect the similarity state 
to include them and its application may be restricted to smaller eddies. The point 
may become clearer if we consider specifically the one-dimensional spectrum 
tensor aij(/c) of the turbulent stress tensor U G . .  The similarity law for small 
eddies near the surface then asserts that 

= ( l - ~ z / h ) u ~ , F , ~ ( ~ ~ h - x ] ) ,  for ~h 1, 
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where ej is some unknown function of the dimensionless variable ~ ( h  - z).  Now, 
if the shear stress depends only on local quantities, there must be at most 

a negligible contribution to cD,,d~ from values of K outside the similarity range 

and /om~-1F13d~ must certainly be finite. On the other hand, if there is to be 

horizontal motion in the surface with a finite amount of energy contained in each 
part of the spectrum, it is merely necessary that Fll should vary as ~ - l ( h  - z)-l for 
small values of ~ ( h  - z),  since then at z = h 

K @ ~ ~  cc U $ ~ K - % - - ~  for ~h 1.  

Clearly this form for the spectrum does not become small as K decreases, and 
indeed would lead to an infinite energy were it not for the cut-off when K is 
comparable with h-l. Hence if there are any motions in the surface, they must 
include some whose scale is comparable with the depth of the channel. Casual 
observation of natural streams suggests that this is what happens in practice. 

The restriction of the similarity state to a limited range of scales is not in any 
way unusual; a closely analogous situation arises in connexion with the pressure 
spectrum I I (K) at a rigid wall. Close to the wall the stress may be assumed to be 
approximately constant over a depth 6, and in that case dimensional arguments 
suggest KII cc ui0 and the amplitude of the pressure fluctuations would be 
infinite if the range of application of the similarity law were not restricted to 

SOm 

z,l 9 K 9 6-1. 


